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Bayesian belief nets (bbns) are directed acyclic graphs representing high dimensional 
uncertainty distributions. They are finding rapidly expanding application in modeling of 
risk and reliability. Their popularity is based on the fact that the influence diagrams 
capture engineer’s intuitive understanding of complex systems, and at the same time 
serve as user interfaces for sophisticated software systems. 
 
However, for modeling risk in complex systems there are several serious limitations to 
bbn’s as currently used.  
(1) Assessment burden: If a node X has K incoming ‘influences’, where each chance 
node has M possible outcomes, then the conditional distribution of X must be assessed 
for each of the MK   input influences. This exorbitant assessment burden can only be 
reduced by grossly coarse-graining the outputs from nodes and/or introducing simplifying 
assumptions for the compounding of ‘influences’.  In practice, chance nodes are often 
restricted to two possible values.  
(2) Continuous chance nodes: Continuous nodes are insupportable unless the joint 
distribution is given by data and happens to be joint normal. In this case the ‘moral 
graph’ can be constructed from the inverse covariance matrix, and updating can be done 
analytically.  Beyond this standard approaches provide no suitable way to represent 
“influence” for continuous chance variables.  To illustrate, consider the situation pictured 
below with A, B and C having continuous marginal distributions. Should we associate the 
arrows with correlation coefficients? The permissible correlations are constrained by the 
marginal distributions – not every correlation is possible with given margins. Further, this 
graph says that A and B are independent, hence they have correlation zero. This also 
constrains the correlations ρ(A,C) and ρ(B,C); for example, these cannot both be close to 
1. In general not every pair of variables will be connected by arrows in a bbn. In the 
figure below, (A,D), (B,D)  and (AC) are not connected. Although the correlation 
ρ(A,B)=0 is determined by the graph, the correlations ρ(A,D) and ρ(B,D) are not 
determined. The question whether any set of assessed correlation values for these pairs 
can be extended to a positive definite correlation matrix is intractable in general. Thus, 
when correlations are assigned to arrows, it is not in general decidable whether there 
exists a joint distribution with the specified one-dimensional margins having the specified 



correlation structure. In fact this statement holds even if the one-dimensional margins are 

all uniform.  
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(3) The relevant conditional independence structure of a given system cannot always be 
captured in a single influence diagram. Smith [1990] advocates using several influence 
diagrams to capture different aspects of a single system.  
 
In [2] the authors introduced an approach to continuous belief nets using vines [1] and the 
elliptical copula [3]. Influences were associated with conditional rank correlations, and 
these were realized by (conditional) elliptical copulae. While this approach has some 
attractive features, notably in preserving some relations between conditional and partial 
correlation, it also has disadvantages. Foremost among these is the fact that zero 
(conditional) correlation does not correspond to (conditional) independence under the 
elliptical copulae.  
 
For this reason we now prefer a different approach which is “copula-free” so long as (1) 
the chosen copula represents (conditional) independence as zero (conditional) correlation, 
and (2) conditional correlation is always constant. This approach cannot rely on the 
equality of partial and conditional correlation, and hence cannot rely on vine 
transformations to deal with observation and updating.  It turns out the some relations 
between partial and conditional correlation are preserved under the above two 
assumptions, and that tractable computational rules for updating can be given. Other 
advantages of the vine – copula approach are retained as well,  namely, the vine can be 
converted into a sampling routine and can deal elegantly with incomplete information. 
 
We show that the elicitation protocol of  [2] based on conditional rank correlation can 
work in a copula-free environment. A unique joint distribution can be determined and 
sampled based on the protocol which preserves the conditional independence properties 
of the bbn. Further, this distribution can be updated with observations. The third issue 
noted above, namely the lack of a single graphical model capturing all relevant 
conditional independence relations, has not yet yielded, and maybe never will. 
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